Успех советской команды на Олимпийских играх в Мюнхене зависит от научных и практики спорта. В этом парадокс, спортивная наука постепенно приобретает ведущую роль, и развиваются теоретические представления — очевидное прикладное значение. Роль теории спорта заключается также и в том, что она дает объективное основание к пересмотру некоторых традиционных взглядов, утверждающих свое нередко прогрессивное значение, и к поиску новых путей прогресса методической мысли. Ярким примером тому служит проблема скоростносиловой подготовки спортсменов, ставшая в последние годы предметом массированного и разностороннего исследования.

Данные современных исследований [1, 2, 3, 4, 6, 14, 15, 16, 17] свидетельствуют о том, что способность человека к проявлению взрывных усилий обеспечивается рядом его структурных (элементарных) способностей. В зависимости от внешних условий реализации рабочего движения эти способности находятся в определенных отношениях [4]. Таким образом, речьидет о компонентном составе и структуре способности человека к проявлению взрывных усилий, изучение которых выступает как научная предпосылка к рациональной организации тренировочного процесса, в частности скоростносиловой подготовки. Ниже приведена попытка обобщения и теоретического осмысления итогов многолетнего исследования упомянутой проблемы.

В качестве фактической основы использованы результаты лабораторных и педагогических экспериментов [6, 7, 8, 9, 10, 11, 12], в которых о помощи эмпирической методике регистрировалась кривая $F(t)$ однородных взрывных усилий, выполняемых различными группами мышц (сгибание и разгибание стопы, бедра, голени, туловища), в динамических (против груза 20, 40, 60 и 80% от максимальной силы) и изометрических условиях работы. Совмещались лишь разнообразие специализации, квалификации, возраста и пола до и после специальной скоростносиловой тренировки различной длительности и целевой направленности. Фактический материал подвергался многомерному статистическому анализу (ковариационному, множестороннему, регрессионному, дискриминантному).

С учетом экспериментального опыта [1, 4] определялись следующие параметры кривой $F(t)$ для участков, ограниченных началом напряжения мышц и его максимальным значением (рис. 1): динамические — максимум F_{max} и среднее значение $F_{ср}$, усилия, импульсы силы P, значения силы, соответствующие средним значениям времени (от 0.1 до 0.5 сек. от начала усилия), максимальные — времена, затраченные на достижение максимума усилия t_{max} и его первой t_1 и второй t_2 половины. На основе указанных параметров оценивалось быстрото наращивания рабочего усилия по тангенсу угла наклона касательной tg_{d1} и tg_{d2} к участкам кривой $F(t)$, ограниченным временем t_1 и t_2 (данные условия Q и G-грацина). В отдельных случаях эти характеристики оценивались как отношение градиентов максимального значения максимальной силы к соответствующему времени. Для оценки общей способности человека к проявлению взрывных усилий использовались отношения максимума максимального значения силы F_{max} ко времени t_{max}, затраченного на его достижение (условно P-градиент). Дополнительно регистрировались величины максимального изометриче-
скотого напряжения мышц, выполняемого без ограничения времени \(P_0 \), среждению скорости неограниченного движения (абсолютная быстрая движения \(V_0 \)), рабочий эффект контрольного скоростно-силового движения или упражнения (скорость движения с различным отягощением, результат прыжка, бега и т. п.) и в отдельных случаях латентное время ортотопно-моторной реакции \(t_0 \).

Итаки многомерного статистического анализа экспериментальных данных (рассчитанных, в частности, корреляционные и факторные матрицы 28 совокупностей параметров кривой \(F(t) \), регистрируемых у каждого из испытуемых) убедительно указывают на наличие следующих компонентных способностей, преимущественно определяющих рабочий эффект взрывного усилия, оцениваемого \(J \)-градиентом:

1. Абсолютная сила мышц. Она оценивается величиной продольного изометрического напряжения мышц без ограничения их времени \(P_0 \) и характеризует силовой потенциал человека.

2. Быстрая сила мышц. Характеризуется способность мышц к быстрому нарастанию эффективной силы в начале рабочего напряжения, позволяющей оценивать тяжесть наклона касательной к кривой \(F(t) \), а также временем достижения первой половины \(t_1 \) и максимума усилия \(t_2 \).

3. Ускоряющая сила мышц. Она характеризуется способностью к быстрому нарастанию гипердинамического эффекта уже начавшегося рабочего напряжения. Наиболее адекватно определяется тяжестью напряжения касательной к кривой \(F(t) \) на участке, соответствующем повышению второй половины максимума усилия \(t_2 \), а также затормаживаем на этом времени \(t_3 \).

4. Абсолютная скорость движения, характеризующая способность мышц к максимальной быстрой реализации движения при отсутствии дополнительного внешнего сопротивления \(V_0 \). Удовлетворительно оценивается по величине средней скорости движения, взятой на его рабочей амплитуте. \(\text{Примечание. У значений факторных весов таб. 1 заштрихованы отсечки.} \)

Таблица 1

<table>
<thead>
<tr>
<th>Характеристика</th>
<th>Женщины (n=73)</th>
<th>Мужчины (n=96)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>(F_0)</td>
<td>318</td>
<td>899</td>
</tr>
<tr>
<td>(F_{\text{max}})</td>
<td>448</td>
<td>857</td>
</tr>
<tr>
<td>(F_{\text{cr}})</td>
<td>234</td>
<td>845</td>
</tr>
<tr>
<td>(t_{\text{max}})</td>
<td>877</td>
<td>182</td>
</tr>
<tr>
<td>(I_0)</td>
<td>163</td>
<td>173</td>
</tr>
<tr>
<td>(t_0)</td>
<td>467</td>
<td>209</td>
</tr>
<tr>
<td>(J)</td>
<td>380</td>
<td>222</td>
</tr>
<tr>
<td>(Q)</td>
<td>179</td>
<td>185</td>
</tr>
<tr>
<td>(G)</td>
<td>150</td>
<td>305</td>
</tr>
<tr>
<td>(F_t)</td>
<td>452</td>
<td>834</td>
</tr>
</tbody>
</table>
шифричности индивидуальных различий между этими показателями.
Во всех случаях связь силового потенциала P_0 и максимума усилия F_{max} со значением любой ординаты кривой $F(t)$ тем меньше, чем ближе последние во времени к началу усилия. В среднем общность индивидуальных различий между P_0 и значениями начал он участка кривой $F(t)$ составляет 20–25% в то время как специфичность — 75–80%. В результате даже кратковременной тренировки у начинающих спортсменов (30–36 занятий) степень общности между P_0 и значениями кривой $F(t)$ уменьшается, что особенно заметно на начальном участке (рис. 3). Следует отметить, что связь между силовым потенциалом и значениями кривой $F(t)$ не на начальном участке у малоатлетов, не тренированных лиц, как правило, существенна, но по мере тренировки становится недостоверной.

Связь силового потенциала P_0 с абсолютной быстротой V_b не только отсутствует, но имеет, как правило, отрицательный знак (величина коэффициента корреляции при этом несущественно отличается от нуля). Связь же силового потенциала со скоростью разбега, выполняемого против внешнего сопротивления V_b, обнаруживает незначительную степень общности в диапазоне последовательно до 40% от P_0. Затем степень общности увеличивается примерно в линейной зависимости от величины внешнего сопротивления (рис. 4).

1 Количество оценка: общность (популаций $=1$) и специфичность (специфичность $=1$) факторов, лежащих в основе того или иного двигательного задания, определяются на основе коэффициента корреляции между признаками: возраст и на 100 ($75-100$) дает процент общности индивидуальных различий, определенных как признак согласован для двух прямых зависимых: X_1 и X_2. Определяется на основе различий ($75-100$) в 100. Понятно, что специфичность появляется значительная, если X_1 больше X_2 ([18, 19, 20, 21]).
Таким образом, абсолютная сила не определяет ли величину рабочего эффекта в на-
чальном моменте напряжения мышц, ни величины максимума усилия в движениях про-
тив небольшого внешнего сопротивления. Отличается существенное смещение с максимумом
взвешенного усилия только в том случае, ес

т, если ведущее сопротивление значительно. В то же время и абсолютная сила не только не

определяет развития абсолютной быст-

родности движения, но выступает по отношению

к последнему как негативный фактор. Однако

если движение выполняется лишь в пределах

взвешенного сопротивления, то его скорость тем

больше зависит от абсолютной силы мышц, чем

более высокое сопротивление.

Исключительно важна степень общей

междуд абсолютной сопротивляемостью

и скоростью в том, случае, если оно вы-

полняется против внешнего сопротивления

V_{вн}. Здесь даже при сопротивлении равном

20% от P_{н} специфические индивидуальные

различия для V_{вн} и V_{вн}, достигают 70% (см.

рис. 2, кривая I). Следовательно, абсолют-

ная быстродействие движения весьма слабо

влияет на скоростную умеренно выявлена у взвешенного сопротивле-

ния выход за пределы 10–20% от P_{н}

(вплоть до 30%), что свидетельствует о значенииспецифичности (около 60%)

характера для времени достижения T_{вн}

и приведения его второго полюса t_{2} наи-

более высокой специфичности (около

50%) — для значений времени реализации

последней t_{1} и второй t_{2} половинки макси-

мума усилия. В результате тренировки на-

блидается тенденция к увеличению степени

обобщенности между этими параметрами глав-

ным образом для t_{1} и t_{2}. Взаимосвязь между градиентами характери-

стиками кривой F (т) различна. В среднем степень обобщенности между J и G-

градиентами равняется 64%, а специфичности — 16%; между J и Q-

градиентами соответственно 52% и 48% и между Q и G-

градиентами 37% и 73%. В результате тренировок доля специфичности индивидуальных различий

в значимости градиентов силь обнаруженная тенденция к увеличению в среднем

на 30% (особенно для Q и J и Q и G-

градиентов). Значения градиентов силы умени-

шены связаны с абсолютной силой мышц

(J и G — в большей и Q в меньшей степени)

и абсолютной быстродействием движения (Q в боль-

шей, J и G — в меньшей степени). Здесь дол-

я общности индивидуальных различий за-

висит от внешнего сопротивления и в сред-

нем равна 20%, т. е. доля специфично-

сти — 80%. В значениях градиентов силы и

всех параметров кривой F (т) характери-

стически более высокая степень обобщенности, достигающая в среднем 64%. В результате тре-}

нировок степень общности градиентов силы с P_{н} значительно уменьшается (осо-

бенно для Q), с соответствующими време-

ными характеристиками кривой F (т) уве-

личивается, а с абсолютной быстротой из-

меняется незначительно. Обнаружено, что

узкость значений градиентов в результате

тренировок сопровождается более вы-

соким темпом сокращения соответствующе-

го времени, нежели увеличением силы.

Следовательно, способность к быстрому

проявлению второй половины F_{вн} взрывного усилия в меньшей степени

зависит друг от друга, чем способность к быстрому проявлению максимума усилия во

второй его половине. Иными словами, об-

щая способность к проявлению взрывной силы J и быстрота развития второй полови-

ны его максимума Q ее значение в значительной мере определяются общими дирикциами. Что же

касается общих причин, обусловливающих способность к быстрому проявлению эффек-

тивной силы в начале рабочего напряжения мышц Q и к быстрому развитию начального

нарашивания мышц G, то они незави-

сительны. Приемом эти способности мало зависят от внешней силы мышц, так и от абсолютной быстроты движений.

Следует особо подчеркнуть, что рассмот-

ренные компоненты способности, будучи

во всем своем составе врожденной принад-

лежностью нерво-мышечного аппарата че-

ловека, тем не менее используются им для

реализации скоростно-силового движения в

неоднаковой мере. В зависимости от внеш-

них условий преимущество роль приоб-

ретает та или другая из них. Общую тенден-

цию здесь можно выразить следующим об-

разом: чем меньше внешнее сопротивление

движению и чем, следовательно, быстрее и

которое при посредстве позы, тем большую

роль играют некоторые из них, а аболю-

тутна быстрота движения V_{вн} и особенно

стартовая сила мышц Q. И, напротив, чем

более высокое сопротивление, тем боль-

шее значение имеют ускоряющая G и або-

лютная сила P_{н} мышц. Если теперь следо-

вать этому критерию, то компоненты спо-

собности, обеспечивающие рабочий эффект

взрывного усилия, допустимо расположить в виде следующего ряда: V_{вн}—Q—G—P_{н}, ко-

торый может быть точно соотнесен с величиной внешнего сопротивления, в зависи-

сти, представленной на абсциссе рис. 2.

Отметим некоторую особенность этого ря-

da. Во-первых, развитие компонентов спо-

собности протекает независимо друг от друга, прогрессирование одной из них очень

незначительно отражается на уровне разви-

тия других. Причем чем дальше отстоят друг от друга способности в этом ряду, тем

меньше их взаимовлияние. Во-вторых, раз-

ятие каждой способности требует адекват-

ного двигательного режима. Причем такой

режим одновременно оказывает тормозные

воздействия преимущественно на одну

способность, не затрагивая (или затрагивая

очень мало) других способностей. В-третьи,

то, относительная независимость компонент-

ных способностей в сочетании с особенностями проявления, так и в своем развитии становится более выраженной с ростом урежения тренировочно-

сти спортсмена. В-четвертых, подвержен

ность компонентных способностей трениро-

вочным нагрузкам. Способности правой части

ряда легче поддаются совершенствованию, чем левой.

Практически, поскольку рабочее движе-

ние в спорте всегда связано с преодолени-

ем того или иного внешнего сопротивления,
Две компонентные способности преимущественно определяют рабочий эффект взрывного-гого усилия — статорная и ускоряющая сила. Для того чтобы учесть их роль в обеспечении скоростно-силового движе- ния в зависимости от внешних условий, обозначим к схеме (рис. 5).

Более подробно [4] приведены кривые F (1) взрывающего изометрического напряжения мышц и взрывного усилия против различно-го внешнего сопротивления, выполненные одним человеком, совпадающим своими началь- ными участками, но отличающимся значением максимума и временем его достижения. Следовательно, величина статорной силы, проявляемой в условиях предельного воле- вого усилия, постоянного вызывающего от внеш- него сопротивления, тогда как степень ис- ползования скоростно-силового потенциала мышц полностью определяется его величиной (при внешнем сопротивлении равным 20% от P_0 реализуется около 40% скользящего потен- циала, при сопротивлении 40% от P_0—50%, при 60%—72%, при 80% в то же время, в условиях взрывающего изометрического напряжения — 88—92%). Практически это означает, что в условиях предельного национального-го внешнего сопротивления $(20$ и даже 40% от P_0) человек просто не успевает про- явить свой силовой потенциал. В этом слу- чаете импульс силы, обеспечивающий дви- жение (веком и он), развязывается преиму- щественно за счет статорной силы мышц. При боль- шем же сопротивлении (выше 60% от P_0) импульс силы, обеспечивающий рабочее дви- жение (веком и он), развязывается преиму- щественно за счет ускоряющей и абсолют- ской силы мышц. Статорная сила играет здесь вспомогательную роль, сводящуюся к тому, чтобы рабочее напряжение мышц как можно быстрее достигло такого уровня, за которым заключаются механизмы, ответ- ственные за проявление ускоряющей силы. Из всего, в частности, следует, что при наличии внешнего сопротивления стато- товая сила проявляется, по существу, в изо- метрических условиях напряжения мышц (тем более выраженных, чем больше внеш- няя составляющая), а ускоряющая сила — в динамическом режиме работы; во-вторых, чем выше уровень развития статорной силы, тем быстрее может быть реализована уско-
явление стартовой, затем усилевающей и
абсолютной силы мышц (если налицо добра-
чное отношение к противодействие). Нетрудно видеть здесь очевидную возмож-
ность для широкого приспособительного ма-
неврирования в интересах эффективного
моточного обеспечения самых разнообраз-
ных с двигателюому режиму движений,
использовать для этого сравнительно ограни-
ченный состав нервомоторных механизмов.
Итоги исследования не подтверждают не-
однократно высказывавшиеся непритязательные
предположения, что способность к проявле-
нию взрывных усилий представляет собой
смысл, т. е. продукт сближений в результате
повторного выполнения основного спортс
тивного упражнения таких качественно различи-
тельных способностей, как быстрая динамика и
сила мышц, развиваемых отдельно. Практи-
чески только адаптированный основному спор-
tивному движению режим работы моторно-
го аппарата способен обеспечить эффектив-
ное совершенствование и, главное, необхо-
dимую форму функционального взаимодейст
вия тех специфических нервомоторных
механизмов, которые необходимы в каждом
конкретном случае. Никакие другие режимы
или их комбинации не могут его заменить.
Поэтому задача педагога заключается в
том, чтобы правильно оценить специфику
работы двигательного аппарата в основном
спортивном упражнении и найти соответстви-
vующие ему по режиму средства. Теорети-
ческое обоснование и методическое вопло-
щение этого требования в полной мере
сформулировано в так называемом "прина-
ципе динамического соответствия" трениро
вочных средств основному спортивному упра-
ражнению [4].
В заключение следует отметить, что по-
казанное большинством спортивных упраж
нений, будь то циклические или адъювна-
ческие локомоции или движение, связанные с
превышением двойного для незначителку
ного внешнего сопротивления, требуют быст-
ной реализации рабочего усилия. Поэтому
можно полагать, что принципиальной харак
тер проявления, совершенствования и функ
ционального взаимодействия компонентных
способностей, прослеживаемых в условиях од
накорных взрывных усилий, есть частичное
выражение общих закономерностей органи
зации скоростно-силовых движений, хотя
некоторые специфические особенности по
следних (например, частота движений, дли
тельность сохранения высокой работоспособ
ности в циклических локомоциях, сте
пень и характер растягивания мышц, пред
шествующего активному рабочему усилию) о
ставят рабочий эффект спортивного упраж
нения в зависимости от ряда соответствую
щих способностей. Поэтому ожидается решение проблемы компонентного состава и
функциональной структуры моторных спо
собностей, развиваемых в условиях спортив
ной деятельности. требует дальнейших ис
следований.

ЛИТЕРАТУРА
1. Голик М. А., Закирский В. М. «Теор. и практ. физ. культу» 1965, № 7 —
2. Закирский В. М. Физические качества спортсмена. Физическое образование,